(本小题满分12分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到如下的列联表:
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
20 |
5 |
25 |
女生 |
10 |
15 |
25 |
合计 |
30 |
20 |
50 |
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,计算出,你有多大的把握认为是否喜欢打蓝球与性别有关?
附:(临界值表供参考)
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(本小题满分10分)选修4-5:不等式选讲
已知函数.
(I)当时,求函数
的定义域;
(II)若关于的不等式
的解集是
,求
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程
已知直线C1:(t为参数),圆C2:
(θ为参数).
(I)当α=时,求C1与C2的交点的坐标;
(II)过坐标原点O作C1的垂线,垂足为A,P为OA的中点.当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.
.选修4-1:几何证明选讲
如图,直线经过⊙
上的点
,并且
⊙
交直线
于
,
,连接
.
(I)求证:直线是⊙
的切线;
(II)若⊙
的半径为
,求
的长.
(本小题满分12分)
已知函数。
(Ⅰ)讨论函数的单调区间;
(Ⅱ)若在
恒成立,求
的取值范围。
(本小题满分12分)
(Ⅰ)一动圆与圆相外切,与圆
相内切求动圆圆心的轨迹曲线E的方程,并说明它是什么曲线。
(Ⅱ)过点作一直线
与曲线E交与A,B两点,若
,求此时直线
的方程。