(本小题满分14分)已知等差数列的各项均为正数,,前n项和为Sn,数列是等比数列,(1)求数列的通项公式.(2)求证:对一切都成立.
如图,在四棱锥中,底面是边长为的正方形,,,且. (Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值; (Ⅲ)棱上是否存在一点,使直线与平面所成的角是?若存在,求的长;若不存在,请说明理由.
已知椭圆:,直线交椭圆于两点. (Ⅰ)求椭圆的焦点坐标及长轴长; (Ⅱ)求以线段为直径的圆的方程.
在平面直角坐标系中,已知点,动点在轴上的正射影为点,且满足直线. (Ⅰ)求动点M的轨迹C的方程; (Ⅱ)当时,求直线的方程.
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)记函数的最小值为,求证:.
已知椭圆:经过点,. (Ⅰ)求椭圆的方程; (Ⅱ)设椭圆的左、右焦点分别为,过点的直线交椭圆于两点,求面积的最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号