已知函数的导函数是
,
在
处取得极值,且
,
(Ⅰ)求的极大值和极小值;
(Ⅱ)记在闭区间
上的最大值为
,若对任意的
总有
成立,求
的取值范围;
(Ⅲ)设是曲线
上的任意一点.当
时,求直线OM斜率的最
小值,据此判断与
的大小关系,并说明理由.
(满分13分)
(1)某三棱锥的侧视图和俯视图如图所示,求三棱锥的体积.
(2)过直角坐标平面中的抛物线
的焦点
作一条倾斜角为
的直线与抛物线相交于A,B两点. 用
表示A,B之间的距离;
(满分12分)已知函数.
(1)求函数的最小正周期和最大值;
(2)求函数在区间
上的最大值与最小值.
(本小题13分)在平面直角坐标系中,
是抛物线
的焦点,
是抛物线
上位于第一象限内的任意一点,过
三点的圆的圆心为
,点
到抛物线
的准线的距离为
.
(Ⅰ)求抛物线的方程;
(Ⅱ)是否存在点,使得直线
与抛物线
相切于点
?若存在,求出点
的坐标;若不存在,说明理由;
(本小题13分)已知椭圆,椭圆
以
的长轴为短轴,且与
有相同的离心率.
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆和
上,
,求直线
的方程.
动圆M过定点A(-,0),且与定圆A´:(x-
)2+y2=12相切.
(1)求动圆圆心M的轨迹C的方程;
(2)过点P(0,2)的直线l与轨迹C交于不同的两点E、F,求的取值范围.