如图,一台起重机,他的机身高AC为21m,吊杆AB长为36m,吊杆与水平线的夹角∠BAD可从30°升到80°.求这台起重机工作时,吊杆端点B离地面CE的最大高度和离机身AC的最大水平距离(结果精确到0.1m). (参考数据:sin80°≈0.98,cos80°≈0.17,tan33°≈5.67,≈1.73)
如图,矩形ABCD中,AB=8,BC=6,请在下图中画出面积不相等的三个菱形,使菱形的顶点都在矩形的边上.
(1)请在图①~③中画出三个菱形的大致图形(可在图中适当标明相关数据);
(图①)(图②)(图③)
(2)请直接写出图①~③中三个菱形的面积分别是、、.
如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.
(1)求证:DE∥BF;
(2)若∠G=90,求证四边形DEBF是菱形.
如图 AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.
(1)求证AD=AE;
(2)连接OA、BC,试判断直线OA与线段BC的位置关系并说明理由.
某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.
(1)求该市对市区绿化工程投入资金的年平均增长率;
(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?
已知,
(1)请尝试通过对上式适当变形,写出一个以为未知数的一元二次方程;
(2)求代数式的值.