在平面直角坐标系中,以
轴为始边做两个锐角
,
,它们的终边分别与单位圆相交于
两点,已知点
的横坐标为
,点
的纵坐标为
.
(1)求的值;
(2)求的值.
设无穷数列的首项
,前
项和为
(
),且点
在直线
上(
为与
无关的正实数).
(1)求证:数列(
)为等比数列;
(2)记数列的公比为
,数列
满足
,设
,求数列
的前
项和
;
(3)若(2)中数列{Cn}的前n项和Tn当时不等式
恒成立,求实数a的取值范围。
已知双曲线x2-y2=2若直线n的斜率为2 ,直线n与双曲线相交于A、B两点,线段AB的中点为P,
(1)求点P的坐标(x,y)满足的方程(不要求写出变量的取值范围);
(2)过双曲线的左焦点F1,作倾斜角为的直线m交双曲线于M、N两点,期中
,F2是双曲线的右焦点,求△F2MN的面积S关于倾斜角
的表达式。
求证:
(1)
(2)
《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.
按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.
(1)计算弧田的实际面积;
(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)
已知函数(其中
且
),
是
的反函数.
(1)已知关于的方程
在区间
上有实数解,求实数
的取值范围;
(2)当时,讨论函数
的奇偶性和增减性;
(3)设,其中
.记
,数列
的前
项的和为
(
),
求证:.