已知数列
是等差数列,
(1)判断数列
是否是等差数列,并说明理由;
(2)如果
,试写出数列
的通项公式;
(3)在(2)的条件下,若数列
得前n项和为
,问是否存在这样的实数
,使
当且仅当
时取得最大值。若存在,求出
的取值范围;若不存在,说明理由。
方程
有实根,且2、
、
为等差数列的前三项.求该等差数列公差
的取值范围.
已知等差数列前三项为a,4,3a,前n项的和为Sn,Sk=2550.
(Ⅰ)求a及k的值;
(Ⅱ)求
求函数y=(sinx+cosx)2+2cos2x的最小正周期.
已知
,试用
表示
的值.
已知复数
均为实数,
为虚数单位,且对于任意复数
。
(1)试求
的值,并分别写出
和
用
、
表示的关系式;
(2)将(
、
)作为点
的坐标,(
、
)作为点
的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点
变到这一平面上的点
,
当点
在直线
上移动时,试求点
经该变换后得到的点
的轨迹方程;
(3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由。