已知是半圆
的直径, 点
在
的延长线上运动(点
与点
不重合), 以
为直径的半圆
与半圆
交于点
的平分线与半圆
交于点
.
如图甲, 求证: 是半圆
的切线;
如图乙, 作于点
, 猜想
与已有的哪条线段的一半相等, 并加以证明;
如图丙, 在上述条件下, 过点作
的平行线交
于点
, 当
与半圆
相切时, 求
甲 乙 的正切值.
已知关于的方程
(1)求证:无论取任何实数时,方程恒有实数根;
(2)若关于的二次函数
的图象与
轴两交点间的距离为2时,求抛物线的解析式.
如图,是等腰三角形,
,以
为直径的
与
交于点
,
,垂足为
,
的延长线与
的延长线交于点
.
(1)求证:是
的切线;
(2)若的半径为2,
,求
的值.
在中,
cm ,
cm ,动点
以1cm/s 的速度从点
出发到点
止,动点
以2cm/s 的速度从点
出发到点
止,且两点同时运动,当以点
、
、
为顶点的三角形与
相似时,求运动的时间.
如图,⊙中,弦
相交于
的中点
,连接
并延长至点
,
,连接BC、
.
(1)求证:;
(2)当时,求
的值.
某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件.经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少时,才能使每天所获销售利润最大?最大利润是多少?