某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:后得到如下图的频率分布直方图.
(1)若该校高一年级共有学生人,试估计该校高一年级期中考试数学成绩不低于60分的人数;
(2)若从数学成绩在与
两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率。
个正数排成如下表所示的
行
列:
其中每一行成等差数列,每一列成等比数列,且各列的公比相等,若,
,
。
①求;
②记,求
关于
的表达式;
③对于②的,求证:
;
④若集合是集合
的真子集,则称由
的判断到
的判断为对
的估计的一次
优化。请你优化③中的结果。
某地预计从年初开始的前个月内,对某种商品的需求总量
(万件)与月份
的近似关系为
。
①写出今年第个月的需求量
(万件)与月份
的函数关系,并求出哪些个月份的需求量超过1.4万件;
②如果将该商品每月初都投放市场万件,要保证每个月都能满足供应,则
至少为多少万件?
若,其中
,记函数
①若图像中相邻两条对称轴间的距离不小于
,求
的取值范围;
②若的最小正周期为
,且当
时,
的最大值是
,求
的解析式,并说明如何由
的图像变换得到
的图像。
在的展开式中,求系数绝对值最大的项和系数最大的项。
连接直角三角形的直角顶点与斜边的两个三等分点,所得线段的长分别为和
,求斜边长。