已知数列满足:(其中常数).(1)求数列的通项公式;(2)当时,数列中是否存在不同的三项组成一个等比数列;若存在,求出满足条件的三项,若不存在,说明理由。
已知函数. (Ⅰ)讨论函数的单调性; (Ⅱ)设,证明:对任意,总存在,使得.
已知椭圆C的中心在原点,焦点在轴上,焦距为2,离心率为 (1)求椭圆C的方程; (2)设直线经过点(0,1),且与椭圆C交于两点,若,求直线的方程.
如图,四边形与均为菱形,设与相交于点,若,且. (1)求证:; (2)求二面角的余弦值.
已知数列、满足,且,其中为数列的前项和,又,对任意都成立。 (1)求数列、的通项公式; (2)求数列的前项和
在中,分别是内角的对边,且,若 (1)求的大小; (2)设为的面积, 求的最大值及此时的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号