设函数。
(1)求函数的最小值;
(2)设,讨论函数
的单调性;
(3)斜率为的直线与曲线
交于
,
两点,求证:
。
过点的直线
交直线
于
,过点
的直线
交
轴于
点,
,
.
(1)求动点的轨迹
的方程;
(2)设直线l与相交于不同的两点
、
,已知点
的坐标为(-2,0),点Q(0,
)在线段
的垂直平分线上且
≤4,求实数
的取值范围.
已知.
(1)已知函数h(x)=g(x)+ax3的一个极值点为1,求a的取值;
(2) 求函数在
上的最小值;
(3)对一切,
恒成立,求实数a的取值范围.
已知函数是定义在
上的偶函数,且当
时,
.现已画出函数
在
轴左侧的图像,如图所示,并根据图像
(1)写出函数的增区间;
(2)写出函数的解析式;
(3)若函数,求函数
的最小值。
已知函数
(1)设方程在(0,
)内有两个零点
,求
的值;
(2)若把函数的图像向左移动
个单位,再向下平移2个单位,使所得函数的图象关于
轴对称,求
的最小值。
鑫隆房地产公司用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为
(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=
)