某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?
已知:在四边形 中,对角线 、 相交于点 ,且 ,作 ,垂足为点 , 与 交于点 , .
(1)如图1,求证: ;
(2)如图2, 是 的中线,若 , ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于 面积的2倍.
为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)通过计算补全条形统计图;
(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?
综合与探究
如图1所示,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过点 , .
(1)求抛物线的解析式
(2)点 在抛物线的对称轴上,求 的最小值;
(3)如图2所示, 是线段 的上一个动点,过点 垂直于 轴的直线与直线 和抛物线分别交于点 、 .
①若以 , , 为顶点的三角形与 相似,则 的面积为 ;
②若点 恰好是线段 的中点,点 是直线 上一个动点,在坐标平面内是否存在点 ,使以点 , , , 为顶点的四边形是菱形?若存在,请直接写出点 的坐标;若不存在,请说明理由.
注:二次函数 的顶点坐标为 ,
综合与实践
折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习.
在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.
实践操作
如图1,将矩形纸片 沿对角线 翻折,使点 落在矩形 所在平面内, 和 相交于点 ,连接 .
解决问题
(1)在图1中,
① 和 的位置关系为 ;
②将 剪下后展开,得到的图形是 ;
(2)若图1中的矩形变为平行四边形时 ,如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;
(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为 ;
拓展应用
(4)在图2中,若 , ,当△ 恰好为直角三角形时, 的长度为 .
某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人 后乘坐小轿车沿同一路线出行.大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的 继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口 时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程 (单位: 和行驶时间 (单位: 之间的函数关系如图所示.
请结合图象解决下面问题:
(1)学校到景点的路程为 ,大客车途中停留了 , ;
(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?
(3)小轿车司机到达景点入口时发现本路段限速 ,请你帮助小轿车司机计算折返时是否超速?
(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待 分钟,大客车才能到达景点入口.