游客
题文

有三块牧场,草长得一样密一样快,面积分别为公顷,10公顷和24公顷,第一块12头牛可吃4星期,第二块21头牛可吃9星期,第三块可供多少头牛吃18个星期?

科目 数学   题型 解答题   难度 中等
知识点: 二元一次不定方程的应用
登录免费查看答案和解析
相关试题

如图,在△ ABC中, ADBCBEAC,垂足分别为 DEADBE相交于点 F

(1)求证:△ ACD∽△ BFD

(2)当tan∠ ABD=1, AC=3时,求 BF的长.

如图,对称轴为直线 x=2的抛物线 yx 2+ bx+ cx轴交于点 A和点 B,与 y轴交于点 C,且点 A的坐标为(﹣1,0)

(1)求抛物线的解析式;

(2)直接写出 BC两点的坐标;

(3)求过 OBC三点的圆的面积.(结果用含π的代数式表示)

注:二次函数 yax 2+ bx+ ca≠0)的顶点坐标为( - b 2 a , 4 ac - b 2 4 a

如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ ABC的三个顶点的坐标分别为 A(﹣1,3), B(﹣4,0), C(0,0)

(1)画出将△ ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△ A 1 B 1 C 1

(2)画出将△ ABC绕原点 O顺时针方向旋转90°得到△ A 2 B 2 O

(3)在 x轴上存在一点 P,满足点 PA 1与点 A 2距离之和最小,请直接写出 P点的坐标.

若两条抛物线的顶点相同,则称它们为"友好抛物线",抛物线 C 1y 1=﹣2 x 2+4 x+2与 C 2y 2=﹣ x 2+ mx+ n为"友好抛物线".

(1)求抛物线 C 2的解析式.

(2)点 A是抛物线 C 2上在第一象限的动点,过 AAQx轴, Q为垂足,求 AQ+ OQ的最大值.

(3)设抛物线 C 2的顶点为 C,点 B的坐标为(﹣1,4),问在 C 2的对称轴上是否存在点 M,使线段 MB绕点 M逆时针旋转90°得到线段 MB′,且点 B′恰好落在抛物线 C 2上?若存在求出点 M的坐标,不存在说明理由.

如图,在Rt△ ABC中,∠ C=90°,以 BC为直径的⊙ O交斜边 AB于点 M,若 HAC的中点,连接 MH

(1)求证: MH为⊙ O的切线.

(2)若 MH = 3 2 , tan ABC = 3 4 ,求⊙ O的半径.

(3)在(2)的条件下分别过点 AB作⊙ O的切线,两切线交于点 DAD与⊙ O相切于 N点,过 N点作 NQBC,垂足为 E,且交⊙ OQ点,求线段 NQ的长度.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号