从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则试验结束.
(Ⅰ)求第一次试验恰摸到一个红球和一个白球概率;
(Ⅱ)记试验次数为,求
的分布列及数学期望
.
(本小题满分15分)如图,在四棱柱中,已知平面
,
且.
(1)求证:;
(2)在棱BC上取一点E,使得∥平面
,求
的值.
如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.
求证:(1)PB∥平面AEC;(2)平面PCD⊥平面PAD.
(本小题满分14分)已知直线和
.
问为何值时,有:(1)
?(2)
?
已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线
相切.
(1)求圆的标准方程;
(2)设直线与圆相交于
两点,求实数
的取值范围;
(3)在(2)的条件下,是否存在实数,使得弦
的垂直平分线
过点
.
(本小题16分)四棱锥中,底面
是边长为8的菱形,
,若
,平面
⊥平面
.
(1)求四棱锥的体积;
(2)求证:⊥
.