溱湖湿地风景区特色旅游项目:水上游艇. 旅游人员消费后风景区可盈利10元/人,每天消费人员为500人. 为增加盈利,准备提高票价,经调查发现,在其他条件不变的情况下,票价每涨1元,消费人员就减少 20人.
(1)现该项目要保证每天盈利6000元,同时又要旅游者得到实惠,那么票价应涨价多少元?
(2)若单纯从经济角度看,票价涨价多少元,能使该项目获利最多?
(本题满分10分)已知:如图,是
的直径,
是
上一点,CD⊥AB,垂足为点
,
是
的中点,
与
相交于点
,
8 cm,
cm.
(1)求
的长;
(2)求
的值.
(本题满分10分)如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C的俯角为60°,热气球A的高度为240米,求这栋大楼的高度.
(本题满分10分)已知函数y=mx2-6x+1(m是常数).⑴求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
⑵若该函数的图象与x轴只有一个交点,求m的值.
(本题满分8分)已知抛物线与x轴没有交点.
(1
)求c的取值范围;
(2)试确定直线y=cx+l经过的象限,并说明理由.
(本题满分8分)写出二次函数的图像顶点坐标和对称轴的位置,求出它的最大值或最小值,并画出它的图像。