已知在四棱锥中,底面是边长为2的正方形,侧棱平面,且,为底面对角线的交点,分别为棱的中点(1)求证://平面;(2)求证:平面;(3)求点到平面的距离。
已知圆+-9x=0,与顶点在原点,焦点在x轴上的抛物线交于A、B两点,OAB的垂心恰为抛物线的焦点,求抛物线的方程。
写出下列命题的“p”命题,并判断它们的真假。 (1)p:x,x+4x+4≥0;(2)p:x,x-4=0。
求直线与双曲线的两个交点和原点所构成的三角形的面积.
已知椭圆的一个焦点是(,0),且截直线x=所得弦长为,求该椭圆的方程。
过抛物线上一定点,作直线分别交抛物线于 (1)求该抛物线上纵坐标为的点到焦点的距离; (2)当与的斜率存在且倾斜角互补时,求的值,并证明直线的斜率是非零常数。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号