设是各项都为正数的等比数列, 是等差数列,且,(1)求,的通项公式;(2)记的前项和为,求证:;(3)若均为正整数,且记所有可能乘积的和,求证:.
已知函数 (Ⅰ)证明:若则 ; (Ⅱ)如果对于任意恒成立,求的最大值.
如图,在轴右侧的动圆⊙与⊙:外切,并与轴相切. (Ⅰ)求动圆的圆心的轨迹的方程; (Ⅱ)过点作⊙:的两条切线,分别交轴于两点,设中点为.求的取值范围.
如图,在三棱锥中,两两垂直且相等,过的中点作平面∥,且分别交于,交的延长线于. (Ⅰ)求证:平面; (Ⅱ)若,求二面角的余弦值.
已知数列,满足:,;() (Ⅰ)计算,并求数列,的通项公式; (Ⅱ)证明:对于任意的,都有.
已知函数. (Ⅰ)求的最小正周期和最大值; (Ⅱ)在△中,分别为角的对边,为△的面积. 若,,,求
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号