游客
题文

抛物线与x轴交与两点,
(1)求该抛物线的解析式;
(2)设(1)中的抛物线与y轴交于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,在△ABC中,∠C=90°.

(1)用尺规作图法作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);
(2)连结BD,若BD平分∠CBA,求∠A的度数.

先化简,再求值:,其中

解一元一次不等式组:,并写出所有的整数解.

如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1,0),点A的坐标为(0,2)点B在
抛物线y=ax 2+ax-2上.

(1)点B的坐标为_____________; 抛物线的关系式为________________________;
(2)若点D是(1)中所求抛物线在第三象限内的一个动点,连接BD、CD.当△BCD的面积最大时,求点D的坐标;
(3)若将三角板ABC沿射线BC平移得到△A ′B ′C′,当C ′ 在抛物线上时.问此时四边形AC C ′A ′是什么特殊四边形?请证明?并判断点A ′是否在抛物线上,请说明理由;

如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC边于点D,交AC边于点G,过D作⊙O的切线EF,交AB的延长线于点F,交AC于点E。

(1)求证:BD=CD
(2)若AE=6,BF=4,求⊙O的半径;
(3)在(2)条件下判断△ABC的形状,并说明理由;

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号