如图,梯形ABCD中,AD∥BC,AB = BC = DC,点E、F分别在AD、AB上,且.
(1)求证:;
(2)连结AC,若,求
的度数.
已知:如图,AC∥DF,直线AF分别直线BD、CE 相交于点G、H,∠1=∠2,求证:∠C=∠D.
某城市对教师试卷讲评课中学生参与的深度与广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图(图1,图2),请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了名学生;
(2)请将条形图补充完整;
(3)在扇形统计图中,“主动质疑”所对应的扇形圆心角度数为;
(4)如果全市有16万名初中学生,那么在试卷评讲课中,“独立思考”的学生约有多少万人?
如图,△ABC在直角坐标系中,
(1)请写出△ABC各点的坐标。
(2)求出S△ABC
(3)若把△ABC向上平移2个单位,再向右平移2个单位得△A′B′C′,在图中画出△A′B′C′,并写出A′、B′、C′的坐标。
如图,在平面直角坐标系中,抛物线(
)与x轴相交于A,B两点,与y轴相交于点C,直线
(
)经过B,C两点,已知A(1,0),C(0,3),且BC=5.
(1)分别求直线BC和抛物线的解析式(关系式);
(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.
(1)求证:∠PNM=2∠CBN;
(2)求线段AP的长.