曲线的参数方程为
(
为参数),将曲线
上所有点的横坐标伸长为原来的2倍,纵坐标伸长为原来的
倍,得到曲线
.
(Ⅰ)求曲线的普通方程;
(Ⅱ)已知点,曲线
与
轴负半轴交于点
,
为曲线
上任意一点, 求
的最大值.
设,求证:
对于函数与常数a,b,若
恒成立,则称(a,b)为函数
的一个“P数对”:设函数
的定义域为
,且f(1)=3.
(1)若(a,b)是的一个“P数对”,且
,
,求常数a,b的值;
(2)若(1,1)是的一个“P数对”,求
;
(3)若()是
的一个“P数对”,且当
时,
,求k的值及
茌区间
上的最大值与最小值.
已知数列{}的前n项和为
,且满足
.
(1)证明:数列为等比数列,并求数列{
}的通项公式;
(2)数列{}满足
,其前n项和为
,试求满足
的最小正整数n.
设函数图像上的一个最高点为A,其相邻的一个最低点为B,且|AB|=
.
(1)求的值;
(2)设△ABC的内角A、B、C的对边分别为a、b、c,且b+c=2,,求
的值域.
已知函数
(1)当a=2时,求曲线在点A(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性与极值.