已知.
(Ⅰ) 若不等式在区间
上恒成立,求实数
的取值范围;
(Ⅱ) 解关于的不等式
.
在中,角
,
,
所对的边分别是
,
,
,已知
,
.
(1)若的面积等于
,求
,
;
(2)若,求
的面积.
已知函数,
,
,其中
,且
.
⑴当时,求函数
的最大值;
⑵求函数的单调区间;
⑶设函数若对任意给定的非零实数
,存在非零实数
(
),使得
成立,求实数
的取值范围.
已知函数.
(Ⅰ)若,且对于任意
恒成立,试确定实数
的取值范围;
(Ⅱ)设函数,
求证:
数列{}的前n项和为
,
.
(Ⅰ)设,证明:数列
是等比数列;
(Ⅱ)求数列的前
项和
;
(Ⅲ)若,
.求不超过
的最大整数的值.
如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过
作圆柱的截面交下底面于
,四边形ABCD是正方形.
(Ⅰ)求证;
(Ⅱ)求四棱锥E-ABCD的体积.