生产A,B两种元件,其质量按测试指标划分为:指标大于或等于为正品,小于
为次品.现随机抽取这两种元件各
件进行检测,检测结果统计如下:
测试指标 |
![]() |
![]() |
![]() |
![]() |
![]() |
元件A |
![]() |
![]() |
![]() |
![]() |
![]() |
元件B |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)试分别估计元件A,元件B为正品的概率;
(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,
(ⅰ)记为生产1件元件A和1件元件B所得的总利润,求随机变量
的分布列和数学期望;
(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.
已知函数
(1)求函数的单调区间.
(2)若方程有4个不同的实根,求
的范围?
(3)是否存在正数,使得关于
的方程
有两个不相等的实根?如果存在,求b
满足的条件,如果不存在,说明理由.
已知椭圆C:(
)的短轴长为2,离心率为
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围?
某种食品是经过、
、
三道工序加工而成的,
、
、
工序的产品合格率分别为
、
、
.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;有两道合格为二等品;其它的为废品,不进入市场.
(1)正式生产前先试生产袋食品,求这2袋食品都为废品的概率;
(2)设为加工工序中产品合格的次数,求
的分布列和数学期望.
如图一,平面四边形关于直线
对称,
.把
沿
折起(如图二),使二面角
的余弦值等于
.对于图二,完成以下各小题:
(1)求两点间的距离;
(2)证明:平面
;
(3)求直线与平面
所成角的正弦值.
已知向量(
为常数且
),函数
在
上的最大值为
.
(1)求实数的值;
(2)把函数的图象向右平移
个单位,可得函数
的图象,若
在
上为增函数,求
取最大值时的单调增区间.