养路处建造无底的圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12米,高4米。养路处拟另建一个更大的圆锥形仓库,以存放更多食盐。现有两种方案:一是新建的仓库的底面直径比原来增加4米(高不变);二是高度增加4米(底面直径不变)。
分别计算按这两种方案所建的仓库的体积;
分别计算按这两种方案所建的仓库的表面积;
哪个方案更经济些?
如图,是椭圆
的左、右顶点,椭圆
的离心率为
,右准线
的方程为
.
(1)求椭圆方程;
(2)设是椭圆
上异于
的一点,直线
交
于点
,以
为直径的圆记为
. ①若
恰好是椭圆
的上顶点,求
截直线
所得的弦长;
②设与直线
交于点
,试证明:直线
与
轴的交点
为定点,并求该定点的坐标.
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).
(1)求关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
如图,四棱锥中,底面
是菱形,
,
,
是
的中点,点
在侧棱
上.
(1)求证:⊥平面
;
(2)若是
的中点,求证:
//平面
;
(3)若,试求
的值.
在中,角
、
、
的对边分别为
、
、
.设向量
,
.
(1)若,
,求角
;(2)若
,
,求
的值.
在平面直角坐标系中,已知点
,
是动点,且
的三边所在直线的斜率满足
.
(1)求点的轨迹
的方程;
(2)若是轨迹
上异于点
的一个点,且
,直线
与
交于点
,问:是否存在点
,使得
和
的面积满足
?若存在,求出点
的坐标;若不存在,说明理由.