游客
题文

如图,是椭圆的左、右顶点,椭圆的离心率为,右准线的方程为.

(1)求椭圆方程;
(2)设是椭圆上异于的一点,直线于点,以为直径的圆记为. ①若恰好是椭圆的上顶点,求截直线所得的弦长;
②设与直线交于点,试证明:直线轴的交点为定点,并求该定点的坐标.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知等差数列的首项,公差,且分别是等比数列.
(1)求数列的通项公式;
(2)设数列对任意正整数均有成立,求的值.

如图,在四棱台中,底面是平行四边形,平面.

(1)证明:平面
(2)证明:平面.

某工厂有工人人,其中名工人参加过短期培训(称为类工人),另外名工人参加过长期培训(称为类工人).现用分层抽样的方法(按类、类分二层)从该工厂的工人中共抽查 名工人,调查他们的生产能力(此处的生产能力指一天加工的零件数).
(1)类工人和类工人中各抽查多少工人?
(2)从类工人中的抽查结果和从类工人中的抽查结果分别如下表1和表2.
表1

生产能力分组





人数





表2

生产能力分组




人数





①求,再完成下列频率分布直方图;
②分别估计类工人和类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组
中的数据用该组区间的中点值作代表).

设函数.
(1)求的最小正周期;
(2)求的单调递减区间.

已知函数.
(1)求函数的单调区间;
(2)证明:对任意的,存在唯一的,使
(3)设(2)中所确定的关于的函数为,证明:当时,有.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号