已知椭圆的中心在坐标原点,焦点在轴上,离心率为,且过双曲线的顶点.(1)求椭圆的标准方程;(2)命题:“设、是双曲线上关于它的中心对称的任意两点, 为该双曲线上的动点,若直线、均存在斜率,则它们的斜率之积为定值”.试类比上述命题,写出一个关于椭圆的类似的正确命题,并加以证明和求出此定值;(3)试推广(Ⅱ)中的命题,写出关于方程(,不同时为负数)的曲线的统一的一般性命题(不必证明).
已知数列的前项和满足,其中. (1)求数列的通项公式; (2)设,数列的前项和为,若对恒成立,求实数的取值范围.
已知函数. (1)讨论函数的单调性; (2)求函数在区间上的最小值.
已知条件使不等式成立;条件有两个负数根,若为真,且为假,求实数的取值范围.
已知等比数列是递增数列,,数列满足,且() (1)证明:数列是等差数列; (2)若对任意,不等式总成立,求实数的最大值.
如图,在三棱锥中,,,°,平面平面,、分别为、中点. (1)求证:; (2)求二面角的大小.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号