已知点,
的坐标分别是
,
.直线
,
相交于点
,且它们的斜率之积为
.
(1)求点的轨迹
的方程;
(2)若过点的两直线
和
与轨迹
都只有一个交点,且
,求
的值;
(3)在轴上是否存在两个定点
,
,使得点
到点
的距离与到点
的距离的比恒为
,若存在,求出定点
,
;若不存在,请说明理由.
本题满分10分)
一艘轮船按照北偏西50°的方向,以15海里每小时的速度航行,一个灯塔M原来在轮船的北偏东10°方向上,经过40分钟,轮船与灯塔的距离是海里,则灯塔和轮船原来的距离为多少?
已知圆过椭圆
的两焦点,与椭圆有且仅有两个
与圆
相切 ,与椭圆
相交于
两点记
(1)求椭圆的方程
(2)求的取值范围;
(3)求的面积S的取值范围.
已知过点的动直线
与抛物线
相交于
两点,当直线
的斜率是
时,
。
(1)求抛物线的方程;(5分)
(2)设线段的中垂线在
轴上的截距为
,求
的取值范围。(7分)
已知椭圆中心在原点,一个焦点为
,且长轴长与短轴长的比是
。
(1)求椭圆的方程;(5分)
(2)是否存在斜率为的直线
,使直线
与椭圆
有公共点,且原点
与直线
的距离等于4;若存在,求出直线
的方程,若不存在,说明理由。(7分)。
(12分)已知双曲线与椭圆有相同焦点,且经过点
,
求该双曲线方程,并求出其离心率、渐近线方程,准线方程。