设直线的参数方程为
(t为参数),若以直角坐标系
的
点为极点,
轴为极轴,选择相同的长度单位建立极坐标系,得曲线
的极坐标方程为ρ=
.
(1)将曲线的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;
(2)若直线与曲线
交于A、B两点,求
.
已知数列的前n项和为
满足:
.
(1)求证:数列是等比数列;
(2)令,对任意
,是否存在正整数m,使
都成立?若存在,求出m的值;若不存在,请说明理由.
某学校为了选拔学生参加“XX市中学生知识竞赛”,先在本校进行选拔测试(满分150分),若该校有100名学生参加选拔测试,并根据选拔测试成绩作出如图所示的频率分布直方图.
(1)根据频率分布直方图,估算这100名学生参加选拔测试的平均成绩;
(2)该校推荐选拔测试成绩在110以上的学生代表学校参加市知识竞赛,为了了解情况,在该校推荐参加市知识竞赛的学生中随机抽取2人,求选取的两人的选拔成绩在频率分布直方图中处于不同组的概率.
设平面向量,
,函数
.
(1)当时,求函数
的取值范围;
(2)当,且
时,求
的值.
已知函数(
).
(1)求函数的单调区间;
(2)函数在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由;
(3)若,当
时,不等式
恒成立,求a的取值范围.
如图,已知圆E:,点
,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(1)求动点Q的轨迹的方程;
(2)已知A,B,C是轨迹的三个动点,A与B关于原点对称,且
,问△ABC的面积是否存在最小值?若存在,求出此时点C的坐标,若不存在,请说明理由.