为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,得到如下数据:
(Ⅰ)若用表中数据所得频率代替概率,则处罚10元时与处罚20元时,行人会闯红灯的概率的差是多少?
(Ⅱ)若从这5种处罚金额中随机抽取2种不同的金额进行处罚,在两个路口进行试验.
①求这两种金额之和不低于20元的概率;
②若用X表示这两种金额之和,求X的分布列和数学期望.
化简求值.
(1)log2+log212-
log242-1;
(2)(lg2)2+lg2·lg50+lg25;
(3)(log32+log92)·(log43+log83).
已知函数f(x)=logax(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围.
比较下列各组数的大小.
(1)log3与log5
;
(2)log1.1 0.7与log1.20.7;
(3)已知logb<log
a<log
c,比较2b,2a,2c的大小关系.
计算:(1)
(2)2(lg)2+lg
·lg5+
;
(3)lg
-
lg
+lg
.
已知函数f(x)=(ax-a-x) (a>0,且a≠1).
(1)判断f(x)的单调性;
(2)验证性质f(-x)=-f(x),当x∈(-1,1)时,并应用该性质求满足f(1-m)+f(1-m2)<0的实数m的范围.