如图所示,两根足够长的光滑金属导轨,相距为L=10cm,竖直放置,导轨上端连接着电阻R1=1Ω,质量为m=0.01kg,电阻为R2=0.2Ω的金属杆ab与导轨垂直并接触良好,导轨电阻不计.整个装置处于与导轨平面垂直的磁感应强度为B=1T的匀强磁场中.ab杆由静止释放,经过一段时间后达到最大速率,g取10m/s2,求此时:
(1)杆的速率; (2)ab间的电压; (3)电阻R1消耗的电功率.
如图所示,有一长为L=0.9m的细线,细线的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在竖直面内做完整的圆周运动。已知水平地面上的C点位于O点正下方,且到O点的距离为h=1.9m,不计空气阻力。(g取10m/s2)
(1)求小球通过最高点A时的速度vA;
(2)若小球通过最低点B时,细线对小球的拉力T恰好为小球重力的6倍,且小球经过B点的瞬间让细线断裂,求小球落地点到C点的距离。
如图甲所示,质量为m=1kg的物体置于倾角为θ=37°的固定斜面上,对物体施一平行于斜面向上的拉力F,t1=1s时撤去拉力,物体运动的部分v—t图像如图10乙所示,试求:(g取10m/s2)
(1)物体所受的拉力F;
(2)t=4s末重力的功率;
宇航员登上某一星球并在该星球表面做实验,用一根不可伸长的轻绳跨过轻质定滑轮,一端挂一吊椅,另一端被坐在吊椅上的宇航员拉住,如图所示。宇航员的质量m1=65kg,吊椅的质量m2=15kg,当宇航员与吊椅以a=1m/s2的加速度匀加速上升时,宇航员对吊椅的压力为l75N。(忽略定滑轮摩擦)
(1)求该星球表面的重力加速度g;
(2)若该星球的半径R=6×106m,地球半径R0=6.4×106m,地球表面的重力加速度g0=10m/s2,求该星球的平均密度与地球的平均密度之比。
如图所示,一根轻质细杆的两端分别固定着A、B两只质量均为m的小球,O点是一光滑水平轴,已知,
使细杆从水平位置由静止开始转动,当B球转到O点正下方时,求:(1)物体
对细杆的拉力。(2)杆对B球做功
。
如图所示,斜面倾角为,滑块质量为
,滑块与斜面的动摩擦因数为μ,从距挡板为
的位置以
的速度沿斜面向上滑行。设重力沿斜面的分力大于滑动摩擦力,且每次与P碰撞前后的速度大小保持不变,挡板与斜面垂直,斜面足够长。求滑块从开始运动到最后停止滑行的总路程
。