设椭圆与抛物线
的焦点均在
轴上,
的中心及
的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)求曲线、
的标准方程;
(Ⅱ)设直线过抛物线
的焦点
,
与椭圆交于不同的两点
、
,当
时,求直线
的方程.
成等差数列的三个正数的和等于15,并且这三个数分别加上1,3,9之后又成等比数列,求这三个数。
如图,Rt△ABC中,AC=BC=,CD⊥AB,沿CD将△ABC折成600的二面角A―CD―B ,求折叠后点A到平面BCD的距离。
C. C
D
A. D. B. A. B
计算(每题 6分,共18分)
(1)2log525 + 3log264(2)(3)
=
.(本小题满分14分)
已知等比数列的前
项和
=
数列
的首项为
,且前
项和
满足
-
=1(
.)
(1)求数列的通项公式
(2)求数列的通项公式
(3)若数列{前
项和为
,问
>
的最小正整数
是多少?
(本小题满分13分)
如图,已知的半径为1,点C在直径AB的延长线上,BC=1,点P是半圆上的一个动点,以PC为边作正三角形PCD,且点D
与圆心分别在PC两侧
(1)若,试将四边形OPDC的面积
y表示成的函数
(2)求四边形OPDC面积的最大值.