设等差数列的公差
,等比数列
公比为
,且
,
,
(1)求等比数列的公比
的值;
(2)将数列,
中的公共项按由小到大的顺序排列组成一个新的数列
,是否存在正整数
(其中
)使得
和
都构成等差数列?若存在,求出一组
的值;若不存在,请说明理由.
已知函数(
)
(1)求f(x)的单调区间;
(2)证明:lnx<
已知函数
(I)求函数的单调区间;
(II)若函数的取值范围;
(III)当
已知函数且
(1)若在
取得极小值-2,求函数
的单调区间
(2)令若
的解集为A,且
,求
的范围
已知函数f(x)=alnx+bx,且f(1)=-1,f′(1)=0,
⑴求f(x);
⑵求f(x)的最大值;
⑶若x>0,y>0,证明:lnx+lny≤.
本题主要考查函数、导数的基本知识、函数性质的处理以及不等式的综合问题,同时考查考生用函数放缩的方法证明不等式的能力.
已知函数f(x)=ax3+x2-a2x(a>0),存在实数x1、x2满足下列条件:①x1<x2;②f¢(x1)=f¢(x2)=0;③|x1|+|x2|=2.
(I)证明:0<a£3;
(II)求b的取值范围;
(III)若函数h(x)=f¢(x)-6a(x-x1),证明:当x1<x<2时,|h(x)|£12a.