设等差数列的公差
,等比数列
公比为
,且
,
,
(1)求等比数列的公比
的值;
(2)将数列,
中的公共项按由小到大的顺序排列组成一个新的数列
,是否存在正整数
(其中
)使得
和
都构成等差数列?若存在,求出一组
的值;若不存在,请说明理由.
已知集合,
,
求(1);(2)
.
已知函数,
为函数
的导函数.
(1)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是,求
的值;
(2)若函数,求函数
的单调区间.
在平面直角坐标系中,动点
到两点
,
的距离之和等于
,设点
的轨迹为曲线
,直线
过点
且与曲线
交于
,
两点.
(1)求曲线的轨迹方程;
(2)是否存在△面积的最大值,若存在,求出△
的面积;若不存在,说明理由.
设数列{an}的前n项和为Sn,且,n=1,2,3
(1)求a1,a2;
(2)求Sn与Sn﹣1(n≥2)的关系式,并证明数列{}是等差数列;
(3)求S1•S2•S3 S2011•S2012的值.
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,,
,平面
底面
,
为
中点,M是棱PC上的点,
.
(1)若点M是棱PC的中点,求证:平面
;
(2)求证:平面底面
;
(3)若二面角M-BQ-C为,设PM=tMC,试确定t的值.