已知函数f(x)=alnx+bx,且f(1)=-1,f′(1)=0,
⑴求f(x);
⑵求f(x)的最大值;
⑶若x>0,y>0,证明:lnx+lny≤.
本题主要考查函数、导数的基本知识、函数性质的处理以及不等式的综合问题,同时考查考生用函数放缩的方法证明不等式的能力.
(本小题共12分)已知在等比数列中,
,且
是
和
的等差中项.
(1)求数列的通项公式;
(2)若数列满足
,求
的前
项和
.
在△ABC中,a、b、c分别是角A、B、C的对边,且.
(1)求角B的大小;
(2)若b=,a+c=4,求△ABC的面积.
(本小题满分12分) 已知关于的不等式
的解集为
.
(1)求实数的值;
(2)解关于的不等式:
(
为常数).
(本小题满分10分)已知命题:方程
表示焦点在
轴上的椭圆;命题
:点
在圆
内.若
为真命题,
为假命题,试求实数
的取值范围.
已知椭圆C:的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线
与以椭圆C的右焦点为圆心,以
为半径的圆相切.
(1)求椭圆的方程.
(2)若过椭圆的右焦点
作直线
交椭圆
于
两点,交y轴于
点,且
求证:
为定值