已知等差数列{}中,
=14,前10项和
. (1)求
;
(2)将{}中的第2项,第4项,…,第
项按原来的顺序排成一个新数列{
},令
,求数列{
}的前
项和
.
设关于x的一元二次方程x2+2ax+b2=0.
(Ⅰ)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.
(Ⅱ)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.
下表是某地区的一种传染病与饮用水的调查表:
得病 |
不得病 |
合计 |
|
干净水 |
52 |
466 |
518 |
不干净水 |
94 |
218 |
312 |
合计 |
146 |
684 |
830 |
利用列联表的独立性检验,判断能否以99.9%的把握认为“该地区的传染病与饮用不干净的水有关”
参考数据:
![]() |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
设离散型随机变量X的分布列为
X |
0 |
1 |
2 |
3 |
4 |
P |
0.2 |
0.1 |
0.1 |
0.3 |
m |
求:(Ⅰ)2X+1的分布列;
(Ⅱ)|X-1|的分布列.
已知P为曲线C上任一点,若P到点F的距离与P到直线
距离相等
(1)求曲线C的方程;
(2)若过点(1,0)的直线l与曲线C交于不同两点A、B,
(I)若,求直线l的方程;
(II)试问在x轴上是否存在定点E(a,0),使恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.
已知函数.
(1)求的单调区间;
(2)设,若对任意
,均存在
,使得
,求
的取值范围.