如图,已知AC⊥平面CDE,BD//AC,△ECD为等边三角形,F为ED边的中点,CD=BD=2AC=2
(1)求证:CF∥面ABE;
(2)求证:面ABE⊥平面BDE:
(3)求三棱锥F—ABE的体积。
(本小题满分12分)
已知函数的最大值为2
是集合
中的任意两个元素,
的最小值为
.
(Ⅰ)求的值
(Ⅱ)若,求
的值
(本小题满分12分)(考生注意:本题请从以下甲乙两题中任选一题作答,若两题都答只以甲题计分)
甲:设数列的前
项和为
,且
;数列
为等差数列,且
(Ⅰ)求数列 的通项公式
(Ⅱ)若,
为数列
的前
项和,求
乙:定义在[-1,1]上的奇函数,已知当
时,
(Ⅰ)求在[0,1]上的最大值
(Ⅱ)若是[0,1]上的增函数,求实数
的取值范围
(本小题满分12分)所对的边分别为
,且
.
(Ⅰ)求角A;
(Ⅱ)已知求
的值.
(本小题满分12分)
已知集合.
求(CRB )
(本小题满分14分)设{an}是等差数列,{bn}是各项都为正数的等比数列,且
a1=b1=1,a3+b5=21,a5+b3=13.
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列的前n项和
.