已知是定义在(0,+∞)上的增函数,且满足
.
(1)求的值; (2)求不等式
的解集.
设.
(1)若时,
单调递增,求
的取值范围;
(2)讨论方程的实数根的个数.
已知椭圆C的中心在原点,焦点F在轴上,离心率
,点
在椭圆C上.
(1)求椭圆的标准方程;
(2)若斜率为的直线
交椭圆
与
、
两点,且
、
、
成等差数列,点M(1,1),求
的最大值.
如图,已知四棱锥平面
,底面
为直角梯形,
,且
,
.
(1)点在线段
上运动,且设
,问当
为何值时,
平面
,并证明你的结论;
(2)当面
,且
,
求四棱锥
的体积.
已知数列各项均为正数,满足
.
(1)计算,并求数列
的通项公式;
(2)求数列的前
项和
.
某种产品按质量标准分为,
,
,
,
五个等级.现从一批该产品随机抽取20个,对其等级进行统计分析,得到频率分布表如下:
等级 |
![]() |
![]() |
![]() |
![]() |
![]() |
频率 |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)在抽取的20个产品中,等级为5的恰有2个,求,
;
(2)在(1)的条件下,从等级为3和5的所有产品中,任意抽取2个,求抽取的2个产品等级恰好相同的概率.