为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用为C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0
x
10),若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
(本小题满分12分)
在△ABC中,角A、B、C的对边分别为a、b、c.已知a+b=5,c =,且
(1)求角C的大小;
(2)求△ABC的面积.
在中,满足
,
是
边上的一点.
(Ⅰ)若,求向量
与向量
夹角的正弦值;
(Ⅱ)若,
=m (m为正常数) 且
是
边上的三等分点.,求
值;
(Ⅲ)若且
求
的最小值。
已知函数,
(Ⅰ)求函数的单调递减区间;
(Ⅱ)令函数(
),求函数
的最大值的表达式
;
设f (x)=sin 2x+(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 该函数的图象可由的图象经过怎样的平移和伸缩变换得到?
(Ⅱ)若f (θ)=,其中
,求cos(θ+
)的值;
已知△ABC的内角满足
若
,
且
满足:
,
,
为
与
的夹角.
(Ⅰ)求;
(Ⅱ)求;