游客
题文

如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.

(1)求证:BD⊥FG;
(2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由.
(3)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图,在四棱锥PABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1)求直线PB与平面POC所成角的余弦值;
(2)求B点到平面PCD的距离;
(3)线段PD上是否存在一点Q,使得二面角QACD的余弦值为?若存在,求出的值;若不存在,请说明理由.

如图所示,在矩形ABCD中,AB=3,AD=6,BD是对角线,过点A作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到点P的位置,且PB=.

(1)求证:PO⊥平面ABCE;
(2)求二面角EAPB的余弦值.

如图(1),四边形ABCD中,E是BC的中点,DB=2,DC=1,BC=,AB=AD=.将图(1)沿直线BD折起,使得二面角ABDC为60°,如图(2).

(1)求证:AE⊥平面BDC;
(2)求直线AC与平面ABD所成角的余弦值.

如图,在三棱柱ABCA1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求证:AA1⊥平面ABC;
(2)求二面角A1BC1B1的余弦值;
(3)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.

如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.

(1)求异面直线AB1与DD1所成角的余弦值;
(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号