游客
题文

某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(Ⅱ)花店记录了100 天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n
14
15
16
17
18
19
20
频数
10
20
16
16
15
13
10

(i)假设花店在这100天内每天购进17枝玫瑰花,求这100 天的日利润(单位:元)的平均数;
(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图1,在边长为的正三角形中,分别为上的点,且满足.将△沿折起到△的位置,使二面角成直二面角,连结.(如图2)

(Ⅰ)求证:⊥平面
(Ⅱ)求直线与平面所成角的大小.

某工厂生产甲、乙两种产品,甲产品的一等品率为,二等品率为;乙产品的一等品率为,二等品率为.生产件甲产品,若是一等品,则获利万元,若是二等品,则亏损万元;生产件乙产品,若是一等品,则获利万元,若是二等品,则亏损
元.两种产品生产的质量相互独立.
(Ⅰ)设生产件甲产品和件乙产品可获得的总利润为(单位:万元),求的分布列;
(Ⅱ)求生产件甲产品所获得的利润不少于万元的概率.

已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)若函数的图象是由的图象向右平移个单位长度,再向上平移1个单位长度得到的,当[,]时,求的最大值和最小值.

选修4-5:不等式选讲:
若关于的方程有实根
(Ⅰ)求实数的取值集合
(Ⅱ)若对于,不等式恒成立,求的取值范围

选修4-4:极坐标与参数方程:
已知椭圆C的极坐标方程为,点为其左,右焦点,直线的参数方程为(为参数,).
(Ⅰ)求直线和曲线C的普通方程;
(Ⅱ)求点到直线的距离之和.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号