“肇实,正名芡实,因肇庆所产之芡实颗粒大、药力强,故名。”某科研所为进一步改良肇实,为此对肇实的两个品种(分别称为品种A和品种B)进行试验.选取两大片水塘,每大片水塘分成n小片水塘,在总共2n小片水塘中,随机选n小片水塘种植品种A,另外n小片水塘种植B.
(1)假设n=4,在第一大片水塘中,种植品种A的小片水塘的数目记为,求
的分布列和数学期望;
(2)试验时每大片水塘分成8小片,即n=8,试验结束后得到品种A和品种B在每个小片水塘上的每亩产量(单位:kg/亩)如下表:
号码 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
品种A |
101 |
97 |
92 |
103 |
91 |
100 |
110 |
106 |
品种B |
115 |
107 |
112 |
108 |
111 |
120 |
110 |
113 |
分别求品种A和品种B的每亩产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
一个几何体是由圆柱和三棱锥
组合而成,点
、
、
在圆
的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图4所示,其中
,
,
,
.
(1)求证:;
(2)求三棱锥的体积.
为了了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如图3所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.
(1)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;
(2)求调查中随机抽取了多少个学生的百米成绩;
(3)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.
已知函数.
(1)求函数的最小正周期和值域;
(2)若函数的图象过点
,
.求
的值.
已知函数,
,
图象与
轴异于原点的交点M处的切线为
,
与
轴的交点N处的切线为
, 并且
与
平行.
(1)求的值;
(2)已知实数t∈R,求的取值范围及函数
的最小值;
(3)令,给定
,对于两个大于1的正数
,存在实数
满足:
,
,并且使得不等式
恒成立,求实数
的取值范围.
已知各项均为正数的数列满足
, 且
,其中
.
(1) 求数列的通项公式;
(2) 设数列满足
,是否存在正整数
,使得
成等比数列?若存在,求出所有的
的值;若不存在,请说明理由。
(3) 令,记数列
的前
项和为
,其中
,证明:
。