某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互独立
(1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x的分布列
(2)求生产4件甲产品所获得的利润不少于10万元的概率
已知函数是
上的奇函数,当
时,
(1)当时,求函数
的解析式;
(2)证明函数在区间
上是单调增函数.
已知全集,集合
,
(1)当时,求
;
(2)当集合满足
时,求实数
的取值范围.
(本小题满分16分)已知数列的前
项和
满足:
,数列
满足:对任意
有
.
(1)求数列与数列
的通项公式;
(2)记,数列
的前
项和为
,证明:当
时,
.
(本小题满分16分)如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植甲水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的处恰有一可旋转光源满足甲水果生长的需要,该光源照射范围是
,点
在直径
上,且
.
(1)若,求
的长;
(2)设, 求该空地产生最大经济价值时种植甲种水果的面积.
(本小题满分16分)对于函数,如果存在实数
使得
,那么称
为
的生成函数.
(1)下面给出两组函数,是否分别为
的生成函数?并说明理由;
第一组:;
第二组:;
(2)设,生成函数
.若不等式
在
上有解,求实数
的取值范围.