(本小题满分12分)
某市为了对学生的数理(数学与物理)学习能力进行分析,从10000名学生中随机抽出100位学生的数理综合学习能力等级分数(6分制)作为样本,分数频数分布如下表:
等级得分 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
人数 |
3 |
17 |
30 |
30 |
17 |
3 |
(Ⅰ)如果以能力等级分数大于4分作为良好的标准,从样本中任意抽取2名学生,求恰有1名学生为良好的概率;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值为1.5)作为代表:
(ⅰ)据此,计算这100名学生数理学习能力等级分数的期望
及标准差
(精确到0.1);
(ⅱ) 若总体服从正态分布,以样本估计总体,估计该市这10000名学生中数理学习能力等级在范围内的人数 .
(Ⅲ)从这10000名学生中任意抽取5名同学,
他们数学与物理单科学习能力等级分
数如下表:
(ⅰ)请画出上表数据的散点图;
(ⅱ)请根据上表提供的数据,用最小二乘法求出关于
的线性回归方程
(附参考数据:
)
(本小题满分12分)
已知函数,
.
(Ⅰ)求函数的最大值和最小值;
(Ⅱ)设函数在
上的图象与
轴的交点从左到右分别为M,N,图象的最高点为P, 求向量
与
夹角的余弦值.
(本小题满分12分)
如图,已知在坐标平面xOy内,M、N是x轴上关于原点O对称的两点,P是上半平面内一点,△PMN的面积为
,点A的坐标为(1+
),
=m·
(m为常数),
(1)求以M、N为焦点且过点P的椭圆方程;
(2)过点B(-1,0)的直线l交椭圆于C、D两点,交直线x=-4于点E,点B、E分的比分别为λ1、λ2,求λ1+λ2的值。
本小题满分12分)
某商店搞促销活动,规则如下:木箱内放有5枚白棋子和5枚黑棋子,顾客从中一次性任意取出5枚棋子,如果取出的5枚棋子中恰有5枚白棋子或4枚白棋子或3枚白棋子,则有奖品,奖励办法如下表:
取出的棋子 |
奖品 |
5枚白棋子 |
价值50元的商品 |
4枚白棋子 |
价值30元的商品 |
3枚白棋子 |
价值10元的商品 |
如果取出的不是上述三种情况,则顾客需用50元购买商品.
(1)求获得价值50元的商品的概率;
(2)求获得奖品的概率;
(3)如果顾客所买商品成本价为10元,假设有10 000人次参加这项促销活动,则商家可以获得的利润大约是多少?(精确到元)
(本小题满分12分)
有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体无盖容器(切、焊损耗忽略不计).有人应用数学知识作如下设计:在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高是小正方形的边长.
(1)请你求出这种切割、焊接而成的长方体容器的最大容积V1;(2)请你判断上述方案是否是最佳方案,若不是,请设计一种新方案,使材料浪费最少,且所得长方体容器的容积V2>V1.