2013年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 |
PM2.5浓度 (微克/立方米) |
频数(天) |
频率 |
第一组 |
(0,25] |
5 |
0.25 |
第二组 |
(25,50] |
10 |
0.5 |
第三组 |
(50,75] |
3 |
0.15 |
第四组 |
(75,100) |
2 |
0.1 |
(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.
(本小题满分12分)
已知各项均为正数的数列的前n项和
满足
(1)求数列的通项公式;
(2)设数列为数列
的前n项和,求证:
(本小题满分12分)
如图,四棱锥P—ABCD中,底面ABCD为矩形,PD垂直于底面ABCD,AD=PD=2,
E、F分别为CD、PB的中点.
(1)求证:EF⊥平面PAB;
(2)设求直线AC与平面AEF所成角
的正弦值.
(本小题满分12分)
袋中共有10个大小相同的编号为1、2、3的球,其中1号球有1个,2号球有m个,3号球有n个.从袋中依次摸出2个球,已知在第一次摸出3号球的前提下,再摸出一个2号球的概率是
(1)求m,n的值;
(2)从袋中任意摸出2个球,设得到小球的编号数之和为,求随机变量
的分布列和数学期望E
.
(本小题满分12分)
已知向量
(1)若求x的值;
(2)函数,若
恒成立,求实数c的取值范围.
在平面直角坐标系中,已知向量(
),
,动点
的轨迹为T.
(1)求轨迹T的方程,并说明该方程表示的曲线的形状;
(2)当时,已知
、
,试探究是否存在这样的点
:
是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积
?若存在,求出点Q的坐标,若不存在,说明理由.