某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在"25周岁以上(含25周岁)"和"25周岁以下"分为两组,再将两组工人的日平均生产件数分为5组: , , , , ,分别加以统计,得到如图所示的频率分布直方图.
(I)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名"25周岁以下组"工人的概率;
(II)规定日平均生产件数不少于80件者为"生产能手",请你根据已知条件完成列联表,并判断是否有90%的把握认为"生产能手与工人所在的年龄组有关"?
附: (注:此公式也可以写成 )
0.100 |
0.050 |
0.010 |
0.001 |
|
2.706 |
3.841 |
6.635 |
10.828 |
如图所示,已知ABCD是正方形,PD⊥平面ABCD,
PD=AD=2.
(1)求异面直线PC与BD所成的角;
(2)在线段PB上是否存在一点E,使PC⊥平面ADE?
若存在,确定E点的位置;若不存在,说明理由.
.(12分) 已知函数
(Ⅰ)求函数f(x)的最小正周期和最小值;
(Ⅱ)在给出的直角坐标系中,
画出函数上的图象.
(本小题满分12分)
某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC、△ABD,经测量AD=BD=14,BC=10,AC=16,∠C=∠D.
(I)求AB的长度;
(Ⅱ)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用最低,请说明理由.
(本小题满分12分)已知函数
(I)当的单调区间和极值;
(II)若函数在[1,4]上是减函数,求实数a的取值范围.
已知函数.
(Ⅰ)若函数在区间上有最小值
,求
的值.
(Ⅱ)若同时满足下列条件①函数在区间
上单调;②存在区间
使得
在
上的值域也为
;则称
为区间
上的闭函数,试判断函数
是否为区间
上的闭函数?若是求出实数
的取值范围,不是说明理由.