如图,四棱锥S-ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=
(1)求证:BC⊥SC; (2)设棱SA的中点为M,求证:DM⊥SB.
已知数列满足:
且
.
(1)令,判断
是否为等差数列,并求出
;
(2)记的前
项的和为
,求
.
如图,在四棱锥中,底面
为正方形,
平面
,已知
,
为线段
的中点.
(1)求证:平面
;
(2)求四棱锥的体积.
已知函数.
(1)从区间内任取一个实数
,设事件
={函数
在区间
上有两个不同的零点},求事件
发生的概率;
(2)若连续掷两次骰子(骰子六个面上标注的点数分别为)得到的点数分别为
和
,记事件
{
在
恒成立},求事件
发生的概率.
已知函数,
.
(1)求函数的最小正周期和单调递增区间;
(2)若函数图象上的两点
的横坐标依次为
,
为坐标原点,求
的外接圆的面积.
已知函数,
满足
,且
,
为自然对数的底数.
(1)已知,求
在
处的切线方程;
(2)若存在,使得
成立,求
的取值范围;
(3)设函数,
为坐标原点,若对于
在
时的图象上的任一点
,在曲线
上总存在一点
,使得
,且
的中点在
轴上,求
的取值范围.