游客
题文

以直角坐标系原点为极点,轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的参数方程为 (为参数,).曲线的极坐标方程为 
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)设直线与曲线相交于A、B两点,当变化时,求的最小值.

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

2013年某工厂生产某种产品,每日的成本(单位:万元)与日产量(单位:吨)满足函数关系式,每日的销售额(单位:万元)与日产量的函数关系式

已知每日的利润,且当时,
(1)求的值;
(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.

某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图.

表1:(甲流水线样本频数分布表)  图1:(乙流水线样本频率分布直方图) 
(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;
(3)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.


甲流水线
乙流水线
合计
合格品



不合格品



合 计



附:下面的临界值表供参考:


0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828

(参考公式:,其中)

如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4, BD=,AB=2CD=8.

(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)求四棱锥P-ABCD的体积.

设向量为锐角.
(1)若,求tanθ的值;
(2)若·,求sin+cos的值.

已知椭圆的左右焦点分别为,离心率,直线经过左焦点.
(1)求椭圆的方程;
(2)若为椭圆上的点,求的范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号