游客
题文

过抛物线 E : x 2 = 2 p y p > 0 的焦点 F 作斜率分别为 k 1 , k 2 的两条不同的直线 l 1 , l 2 ,且 k 1 + k 2 = 2 l 1 E 相交于点 A , B , l 2 E 相交于点 C , D .以 A B , C D 为直径的圆 M ,圆 N M , N 为圆心)的公共弦所在的直线记为 l .
(I)若 k 1 > 0 , k 2 > 0 ,证明; F M · F N < 2 p 2
(II)若点 M 到直线 l 的距离的最小值为 7 5 5 ,求抛物线 E 的方程.

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

(本小题满分12分)如图, 在直角梯形中,

分别是的中点,现将折起,使,
(1)求证:∥平面;
(2)求点到平面的距离.

(本小题满分10分)已知:四边形ABCD是空间四边形,E, H分别是边AB,AD的中点,F, G分别是边CB,CD上的点,且
求证:(1)四边形EFGH是梯形;
(2)FE和GH的交点在直线AC上 .

(本小题满分8分)已知直线l垂直于直线3x-4y-7=0,直线l与两坐标轴围成的三角形的周长为10,求直线l的方程

已知数列满足,试证明:
(1)当时,有
(2).

如图,在四棱锥中,⊥底面,底面为梯形,,,,点在棱上,且

(1)求证:平面⊥平面
(2)求平面和平面所成锐二面角的余弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号