游客
题文

过抛物线 E : x 2 = 2 p y p > 0 的焦点 F 作斜率分别为 k 1 , k 2 的两条不同的直线 l 1 , l 2 ,且 k 1 + k 2 = 2 l 1 E 相交于点 A , B , l 2 E 相交于点 C , D .以 A B , C D 为直径的圆 M ,圆 N M , N 为圆心)的公共弦所在的直线记为 l .
(I)若 k 1 > 0 , k 2 > 0 ,证明; F M · F N < 2 p 2
(II)若点 M 到直线 l 的距离的最小值为 7 5 5 ,求抛物线 E 的方程.

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

如图所示,平行六面体ABCD—A1B1C1D1中,以顶点A为端点的三条棱长度都为1,且两
两夹角为60°.
(1)求AC1的长;
(2)求BD1与AC夹角的余弦值.

如图所示,PD⊥平面ABCD,且四边形ABCD为正方形,AB=2,E是PB的中点,
cos〈,〉=.
(1)建立适当的空间坐标系,写出点E的坐标;
(2)在平面PAD内求一点F,使EF⊥平面PCB.

如图所示,正四面体V—ABC的高VD的中点为O,VC的中点为M.
(1)求证:AO、BO、CO两两垂直;

(2)求〈,〉.

如图所示,在平行六面体ABCD—A1B1C1D1中,O是B1D1的中点,
求证:B1C∥平面ODC1.

如图所示,在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(,0),点D在平面yOz内,且∠BDC=90°,∠DCB=30°.
(1)求的坐标;
(2)设的夹角为,求cos的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号