过抛物线
的焦点
作斜率分别为
的两条不同的直线
,且
,
与
相交于点
,
与
相交于点
.以
为直径的圆
,圆
(
为圆心)的公共弦所在的直线记为
.
(I)若
,证明;
;
(II)若点
到直线
的距离的最小值为
,求抛物线
的方程.
如图所示,平行六面体ABCD—A1B1C1D1中,以顶点A为端点的三条棱长度都为1,且两
两夹角为60°.
(1)求AC1的长;
(2)求BD1与AC夹角的余弦值.
如图所示,PD⊥平面ABCD,且四边形ABCD为正方形,AB=2,E是PB的中点,
cos〈,
〉=
.
(1)建立适当的空间坐标系,写出点E的坐标;
(2)在平面PAD内求一点F,使EF⊥平面PCB.
如图所示,正四面体V—ABC的高VD的中点为O,VC的中点为M.
(1)求证:AO、BO、CO两两垂直;
(2)求〈,
〉.
如图所示,在平行六面体ABCD—A1B1C1D1中,O是B1D1的中点,
求证:B1C∥平面ODC1.
如图所示,在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(,
,0),点D在平面yOz内,且∠BDC=90°,∠DCB=30°.
(1)求的坐标;
(2)设和
的夹角为
,求cos
的值.