过抛物线 E : x 2 = 2 p y p > 0 的焦点 F 作斜率分别为 k 1 , k 2 的两条不同的直线 l 1 , l 2 ,且 k 1 + k 2 = 2 , l 1 与 E 相交于点 A , B , l 2 与 E 相交于点 C , D .以 A B , C D 为直径的圆 M ,圆 N ( M , N 为圆心)的公共弦所在的直线记为 l . (I)若 k 1 > 0 , k 2 > 0 ,证明; F M ⇀ · F N ⇀ < 2 p 2 ; (II)若点 M 到直线 l 的距离的最小值为 7 5 5 ,求抛物线 E 的方程.
①对任意,,,都有; ②对任意都有. (Ⅰ)试证明:为上的单调增函数; (Ⅱ)求; (Ⅲ)令,,试证明:
(注:) (1)求;(2)求的取值范围
(I)若能表示成一个奇函数和一个偶函数的和,求的解析式; (II)若命题P:函数在区间上是增函数与命题Q:.函数是减函数有且仅有一个是真命题求a的取值范围
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号