(1)关于原子核的结合能,下列说法正确的是。
A. |
原子核的结合能等于使其完全分解成自由核子所需的最小能量 |
B. |
一重原子核衰变成α粒子和另一原子核,衰变产物的结合能之和一定大于原来重核的结合能 |
C. |
铯原子核()的结合能小于铅原子核()的结合能 |
D. |
比结合能越大,原子核越不稳定 |
E. |
自由核子组成原子核时,其质量亏损所对应的能量大于该原子核的结合能 |
(2)如图,光滑水平直轨道上有三个质童均为的物块、、。 的左侧固定一轻弹簧(弹簧左侧的挡板质最不计).设以速度朝运动,压缩弹簧;当、 速度相等时,与恰好相碰并粘接在一起,然后继续运动。假设和碰撞过程时间极短。求从开始压缩弹簧直至与弹黄分离的过程中,
(ⅰ)整个系统损失的机械能;
(ⅱ)弹簧被压缩到最短时的弹性势能。
电动车以40 m/s的速度行驶,刹车后得到的加速度大小为4m/s2,从刹车开始,求经12S,电动车通过的位移是多少?
磁谱仪是测量
能谱的重要仪器。磁谱仪的工作原理如图所示,放射源
发出质量为
、电量为
的粒子沿垂直磁场方向进入磁感应强度为
的匀强磁场,被限束光栏
限制在2
的小角度内,粒子经磁场偏转后打到与束光栏平行的感光片
上。(重力影响不计)
(1)若能量在
(
,且
)范围内的
粒子均垂直于限束光栏的方向进入磁场。试求这些
粒子打在胶片上的范围
.
(2)实际上,限束光栏有一定的宽度,
粒子将在2角内进入磁场。试求能量均为
的
粒子打到感光胶片上的范围
单位时间内流过管道横截面的液体体积叫做液体的体积流量(以下简称流量)。由一种利用电磁原理测量非磁性导电液体(如自来水、啤酒等)流量的装置,称为电磁流量计。它主要由将流量转换为电压信号的传感器和显示仪表两部分组成。传感器的结构如图所示,圆筒形测量管内壁绝缘,其上装有一对电极和c,a、c间的距离等于测量管内径D,测量管的轴线与a、c的连接方向以及通电线圈产生的磁场方向三者间两两相互垂直。当导电液体流过测量管时,在电极a、c的间出现感应电动势E,并通过与电极连接的仪表显示出液体流量Q。设磁场均匀恒定,磁感应强度为B。
(1)已知,设液体在测量管内各处流速相同,试求E的大小(
取3.0);
(2)一新建供水站安装了电磁流量计,在向外供水时流量本应显示为正值。但实际显示却为负值。经检查,原因是误将测量管接反了,既液体由测量管出水口流入,从如水口流出。因为已加压充满管道。不便再将测量管拆下重装,请你提出使显示仪表的流量指示变为正值的简便方法;
(3)显示仪表相当于传感器的负载电阻,其阻值记为R,a、c间导电液体的电阻r随液体电阻率的变化而变化,从而会影响显示仪表的示数。试以E、R、r为参量,给出电极a、c间输出电压U的表达式,并说明怎样可以降低液体电阻率变化对显示仪表示数的影响。
已知地球半径为R,地球表面重力加速度为g,不考虑地球自转的影响。
(1)推导第一宇宙速度v1的表达式;
(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h,求卫星的运行周期T。
如图甲,在水平地面上固定一倾角为θ的光滑绝缘斜面,斜面处于电场强度大小为E、方向沿斜面向下的匀强电场中。一劲度系数为k的绝缘轻质弹簧的一端固定在斜面底端,整根弹簧处于自然状态。一质量为m、带电量为q(q>0 )的滑块从距离弹簧上端为s0处静止释放,滑块在运动过程中电量保持不变,设滑块与弹簧接触过程没有机械能损失,弹簧始终处在弹性限度内,重力加速度大小为g。(1)求滑块从静止释放到与弹簧上端接触瞬间所经历的时间t1;
(2)若滑块在沿斜面向下运动的整个过程中最大速度大小为vm,求滑块从静止释放到速度大小为vm过程中弹簧的弹力所做的功W;
(3)从滑块静止释放瞬间开始计时,请在乙图中画出滑块在沿斜面向下运动的整个过程中速度与时间关系v-t图象。图中横坐标轴上的t1、、t2及t3分别表示滑块第一次与弹簧上端接触、第一次速度达到最大值及第一次速度减为零的时刻,纵坐标轴上的v1为滑块在t1时刻的速度大小,vm是题中所指的物理量。(本小题不要求写出计算过程)