平面直角坐标系
中,过椭圆
右焦点的直线
交
于
两点,
为
的中点,且
的斜率为.
(Ι)求
的方程;
(Ⅱ)
为
上的两点,若四边形
的对角线
,求四边形面积的最大值
已知椭圆的离心率为
,
、
分别为椭圆
的左、右焦点,
是椭圆
上一点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线
交椭圆
于
、
两点,
是坐标原点,且
,求直线
的方程.
设数列的前
项和为
,且
,
.
(Ⅰ)求数列的通项公式;
(Ⅱ)在与
之间插入
个数,使这
个数组成一个公差为
的等差数列,求数列
的前
项和
.
(本小题满分12分)
在三棱柱中,
,
.
分别是
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)若,求证:
面
;
(Ⅲ)在(Ⅱ)的条件下,,
,求三棱锥
的体积.
(本小题满分12分)
在某校举办的体育节上,参加定点投篮比赛的甲、乙两个小组各有编号为1,2,3,4的4名学生. 在比赛中,每人投篮10次,投中的次数统计如下表:
学生 |
1号 |
2号 |
3号 |
4号 |
甲组 |
6 |
6 |
9 |
7 |
乙组 |
9 |
8 |
7 |
4 |
(Ⅰ)从统计数据看,甲、乙两个小组哪个小组成绩更稳定(用数据说明)?
(Ⅱ)从甲、乙两组中各任选一名同学,比较两人的投中次数,求甲组同学投中次数高于乙组同学投中次数的概率.
(本题小满分12分)
如图,平面四边形中,角
,且
.
(Ⅰ)求∠;
(Ⅱ)求四边形的面积
.