游客
题文

椭圆 C : x 2 a 2 + y 2 b 2 = 1 a > b > 0 的左 右焦点分别是 F 1 , F 2 ,离心率为 3 2 ,过 F 1 且垂直于 x 轴的直线被椭圆 C 截得的线段长为1.
(Ⅰ)求椭圆 C 的方程;
(Ⅱ)点 P 是椭圆 C 上除长轴端点外的任一点,连接 P F 1 , P F 2 ,设 F 1 P F 2 的角平分线 P M C 的长轴于点 M m , 0 ,求 m 的取值范围;

(Ⅲ)在(Ⅱ)的条件下,过点 P 作斜率为 k 的直线 l ,使 l 与椭圆 C 有且只有一个公共点,设直线的 P F 1 , P F 2 斜率分别为 k 1 , k 2 .若 k 0 ,试证明 1 k k 1 + 1 k k 2 为定值,并求出这个定值.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分10分)已知:四边形ABCD是空间四边形,E, H分别是边AB,AD的中点,F, G分别是边CB,CD上的点,且
求证:(1)四边形EFGH是梯形;
(2)FE和GH的交点在直线AC上 .

(本小题满分8分)已知直线l垂直于直线3x-4y-7=0,直线l与两坐标轴围成的三角形的周长为10,求直线l的方程

已知数列满足,试证明:
(1)当时,有
(2).

如图,在四棱锥中,⊥底面,底面为梯形,,,,点在棱上,且

(1)求证:平面⊥平面
(2)求平面和平面所成锐二面角的余弦值.

在直角三角形中,边上的高,,,分别为垂足,求证:.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号