已知数列满足
,试证明:
(1)当时,有
;
(2).
通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表:
性别与看营养说明列联表单位: 名
男 |
女 |
总计 |
|
看营养说明 |
50 |
30 |
80 |
不看营养说明 |
10 |
20 |
30 |
总计 |
60 |
50 |
110 |
(1)从这50名女生中按是否看营养说明采取分层抽样,抽取一个容量为10的样本,问样本中看与不看营养说明的女生各有多少名?
(2)根据以上列联表,能否在犯错误的概率不超过0.01的前提下认为性别与是否看营养说明之间有关系?
下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中
)
已知
(1)求的最小值
(2)由(1)推出的最小值C
(不必写出推理过程,只要求写出结果)
(3)在(2)的条件下,已知函数若对于任意的
,恒有
成立,求
的取值范围.
已知椭圆(a>b>0)抛物线
,从每条曲线上取两个点,将其坐标记录于下表中:
![]() |
![]() |
4 |
![]() |
1 |
![]() |
2 |
4 |
![]() |
2 |
(1)求的标准方程;(2)四边形ABCD的顶点在椭圆
上,且对角线AC、BD过原点O,若
,
(i) 求的最值.
(ii) 求四边形ABCD的面积;
已知各项均不相等的等差数列的前三项和为18,
是一个与
无关的常数,若
恰为等比数列
的前三项,(1)求
的通项公式.(2)记数列
,
的前三
项和为
,求证:
如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角
中.
(1) 求CD与面ABC所成的角正弦值的大小;
(2) 对于AD上任意点H,CH是否与面ABD垂直。