已知椭圆(a>b>0)抛物线
,从每条曲线上取两个点,将其坐标记录于下表中:
![]() |
![]() |
4 |
![]() |
1 |
![]() |
2 |
4 |
![]() |
2 |
(1)求的标准方程;(2)四边形ABCD的顶点在椭圆
上,且对角线AC、BD过原点O,若
,
(i) 求的最值.
(ii) 求四边形ABCD的面积;
已知,
是平面上的两个定点,动点
满足
.
(1)求动点的轨迹方程;
(2)已知圆方程为,过圆上任意一点作圆的切线,切线与(1)中的轨迹交于
,
两点,
为坐标原点,设
为
的中点,求
长度的取值范围.
已知数列,
是其前
项的且满足
(1)求证:数列为等比数列;
(2)记,求
的表达式。
设函数,其中向量
,
,
.
(1)求的最小正周期与单调递减区间;
(2)在△中,
、
、
分别是角
、
、
的对边,已知
,
,△
的面积为
,求
的值.
已知圆C:。
(1)求m的取值范围。
(2)当m=4时,若圆C与直线交于M,N两点,且
,求
的值。
(本小题满分14分)已知椭圆(
)的左、右顶点分别为
,
,
且,
为椭圆上异于
,
的点,
和
的斜率之积为
.
(1)求椭圆的标准方程;
(2)设为椭圆中心,
,
是椭圆上异于顶点的两个动点,求
面积的最大值.